NOTIZEN 315

## X-Ray Studies in the System Ti-Hg-Zn

## M. Pušelj and Z. BAN

Institute for Inorganic and Analytical Chemistry, the University Zagreb, Yugoslavia

(Z. Naturforsch. 25 a, 315 [1970]; received 5 January 1970)

In a recent paper reported on part of the system Ti-Cu-Hg 1 a new phase TiCuHg2 was found having the crystal structure B 32 (NaTl type). The most interesting but hitherto unexplained feature of this structure is the degree of filling of the unit cell (71%). In order to examine which one of the metals in the structure is eventually responsible for the formation of this particular phase, to which often a certain degree of ionic bonding is ascribed2, we tried to prepare the isostructural compound TiZnHg2. However, it turned out that its crystal structure belongs to the AuCu<sub>3</sub> (Ll<sub>2</sub>) type  $(a=4.02\pm0.02 \text{ Å})$ , where all atoms are distributed statistically. We assume that the alternative configurations of the electron shells in the copper atom (3d104s1 or 3d94s2) may be responsible for such a behaviour. Diffractometer data for this phase are given in Table I.

| HKL | $d_{0}$ | $d_{\mathrm{c}}$ | $I_0$ | $I_{\mathrm{c}}$ |
|-----|---------|------------------|-------|------------------|
| 111 | 2.310   | 2.320            | 100   | 100              |
| 200 | 2.010   | 2.013            | 40    | 45               |
| 220 | 1.425   | 1.421            | 38    | 40               |
| 311 | 1.212   | 1.210            | 42    | 45               |
| 222 | 1.164   | 1.160            | 15    | 14               |
| 400 | 1.002   | 1.002            | 5     | 8                |
| 331 | 0.923   | 0.923            | 20    | 18               |
| 420 | 0.897   | 0.897            | 25    | 23               |
| 422 | 0.821   | 0.821            | 25    | 20               |

Table I. Diffractometer data for  $TiZnHg_2$  ( $CuK\alpha$ -radiation) ( $Ll_2$ -type).

We also found that exactly 25% of titanium atoms in the TiHg phase (L  $I_0$ -AuCu type)<sup>3</sup> can be replaced by zinc, yielding thus a continuous series of solid solutions TiHg-Ti<sub>3</sub>Hg<sub>4</sub>Zn. It is interesting to notice that the zinc atoms tend to occupy preferentially positions parallel to the basal plane of the tetragonal unit cell of Ti<sub>3</sub>Hg<sub>4</sub>Zn ( $a=4.14\pm0.02$  Å,  $c=4.04\pm0.02$  Å). Since they are smaller than titanium atoms ( $r_{\text{Ti}}=1.47$  Å,  $r_{\text{Zn}}=1.34$  Å) parameter a decreases monotonously (Fig. 1) while c remains constant within the error limits. We were unable to find any sign of ordering between the zinc and titanium atoms in the

Reprints request to Dr. Z. Ban, Institute for Inorganic and Analytical Chemistry, University of Zagreb, Zagreb, Jugoslawien, Ul. Soc. Rev. 8.

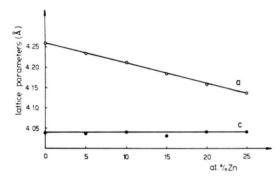



Fig. 1. The variation of the lattice parameters a and c in the series of solid solutions TiHg-Ti<sub>3</sub>ZnHg<sub>4</sub>.

intermediary layer, even though an extensive series of experiments has been carried out. The relevant x-ray (film) data are given in Table II.

| HKL | $d_0$                                  | $d_{\mathrm{c}}$      | $I_0$               | $I_{\mathrm{c}}$ |
|-----|----------------------------------------|-----------------------|---------------------|------------------|
| 001 | 4.031                                  | 4.041                 | 20                  | 19               |
| 110 | 2.936                                  | 2.934                 | 22                  | 20               |
| 111 | 2.372                                  | 2.375                 | 100                 | 100              |
| 200 | 2.072                                  | 2.069                 | 30                  | 22               |
| 201 | 1.844                                  | 1.844                 | 14                  | 11               |
| 112 | 1.663                                  | 1.667                 | 16                  | 14               |
| 220 | 1.462                                  | 1.464                 | 12                  | 10               |
| 221 | 1.373                                  | 1.376                 | 6                   | 4                |
| 003 | 1.350                                  | 1.351                 | 1                   | $2.10^{-3}$      |
| 310 | 1.308                                  | 1.308                 | . 2                 | 4                |
| 311 | 1.245                                  | 1.242                 | 15                  | 8                |
| 222 | 1.188                                  | 1.186                 | 6                   | 8                |
| 203 | 1.127                                  | 1.129                 | 1                   | 2                |
| 312 | 1.100                                  | 1.099                 | 1                   | 3                |
| 004 | 1.010                                  | 1.009                 | 1                   | 0.4              |
| 114 | 0.995                                  | 0.954                 | 1                   | 2                |
| 311 | 0.948                                  | 0.948                 | 6                   | 2                |
| 420 | 0.924                                  | 0.923                 | 3                   | 1                |
| 422 | 0.845                                  | 0.844                 | 5                   | 2                |
|     | $\varrho_{\rm x} = 12.15 \; {\rm g/c}$ | $m^3$ $\varrho_0=11.$ | $80 \text{ g/cm}^3$ |                  |

Table II. X-ray data for Hg<sub>4</sub>ZnTi<sub>3</sub> (CuKa-radiation).

Samples were prepared by heating mixtures of the elements in Vycor tubes filled with purified and dried argon (0.5 at.) at temperatures ranging from  $400-700\,^{\circ}\text{C}$ , depending on composition. Densities were determined pycnometrically at least three times for each particular sample, using decalin, CCl<sub>4</sub> and CH<sub>2</sub>J<sub>2</sub>. The observed discrepancies must be ascribed to the pasty nature of the samples and the very pronounced tendency towards decomposition, during extended aging at room temperature.

<sup>&</sup>lt;sup>1</sup> M. Pušelj and Z. Ban, Croat. Chem. Acta 41, 79 [1969].

<sup>&</sup>lt;sup>2</sup> E. ZINTL and F. HUSEMANN, Z. Physik. Chem. Leipzig (B) 21, 138 [1933].

<sup>&</sup>lt;sup>3</sup> I. Pietrokowsky, Trans. AIME 200, 219 [1954].